PALL POU GASKLEEN® PURIFIER ASSEMBLIES
With AresKleen™ Purification Materials

True Point-of-Use Purifiers

Installation/Replacement Instructions

Revision C: November 2008

Pall Microelectronics Group
2200 Northern Boulevard
East Hills, New York 11548 – 1289
516 – 484 – 5400 • 1 – 800 – 360 – 7255
Fax: 516 – 625 – 3610
http://www.pall.com
These instructions are to be used with the following Pall point-of-use (POU) GASKLEEN® Purifier assemblies containing Pall AresKleen™ Purification Material:

- MINI GASKLEEN® PURIFIER Part #: GLPXXPVMM4
- GASKLEEN® ST PURIFIER Part #: GLP5XXPVMM4
- GASKLEEN® II PURIFIER Part #: GLP2XXPVMM4
- MAXI GASKLEEN® PURIFIER Part #: GLP8XXPVMM4

Please read all instructions carefully. Questions should be resolved prior to proceeding with the installation of any purifier. Contact Pall Corporation Scientific & Laboratory Services (SLS) for technical assistance. Pall Gaskleen In-Line Purifiers are engineered specifically to ensure gas consistency for low to moderate flow specialty and inert gas purification requirements. Specific details for each type of purifier are listed in Tables 1 & 3. Reference the part number of the assembly being installed to determine the appropriate conditions for the intended operation.

Important: Verify that purifier has the appropriate Part # (reference purifier datasheets) for its intended gas service.

Table 1: Hardware

<table>
<thead>
<tr>
<th>Product:</th>
<th>Purifier Dimensions:</th>
<th>End Fittings:</th>
<th>Design Flow Rate and MAWP:</th>
</tr>
</thead>
</table>
| Mini Gaskleen Purifier | Diameter = 0.84” (21.3 mm)
Length = 3.31” (84.1 mm) | ¼” Non – Rotatable Male Gasket Seal* | 1 slpm (2.1 scfh)
3,000 psig (20.7 MPa) |
| Gaskleen II Purifier | Diameter = 1.36” (34.5 mm)
Length = 3.31” (84.1 mm) | ¼” Non – Rotatable Male Gasket Seal* | 3 slpm (6.4 scfh)
1,000 psig (6.9 MPa) |
| Gaskleen ST Purifier | Diameter = 1.25” (31.8 mm)
Length = 5.00” (127.0 mm) | ¼” Non – Rotatable Male Gasket Seal* | 5 slpm (10.6 scfh)
2,200 psig (15.2 MPa) |
| Maxi Gaskleen Purifier | Diameter = 2.50” (63.5 mm)
Length = 8.20” (208.3 mm) | ¼” Rotatable Male Gasket Seal* | 50 slpm (105.9 scfh)
750 psig (5.2 MPa) |

* VCR® compatible; VCR® is a Swagelok Company Trademark.
Pall Gaskleen In-Line Purifiers improve and maintain the purity of specific process gases or gas mixtures used in semiconductor manufacturing and other purity-critical applications. Purifier datasheets should be referenced for performance specifications.

Important: Use of this equipment with other than intended gases may create potentially hazardous conditions. The process gas to be purified must correspond with the part number specified on the label attached to the purifier. Verify that purifier has the appropriate part number for its intended gas service (see Table 2 below).

Table 2: Purification Material Designations (“xxP” in part #) and Intended Process Gases

<table>
<thead>
<tr>
<th>INP</th>
<th>SIP</th>
<th>FCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium (He)</td>
<td>Hydrogen (H₂)</td>
<td>Fluoromethane (CH₃F)</td>
</tr>
<tr>
<td>Nitrogen (N₂)</td>
<td>Methane (CH₄)</td>
<td>Difluoromethane (CH₂F₂)</td>
</tr>
<tr>
<td>Neon (Ne)</td>
<td>Ethylene (C₂H₄)</td>
<td>Trifluoromethane (CHF₃)</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>Ethane (C₂H₆)</td>
<td>Tetrafluoromethane (CF₄)</td>
</tr>
<tr>
<td>Krypton (Kr)</td>
<td>Propylene (C₃H₆)</td>
<td>Tetrafluoroethane (C₂H₂F₄)</td>
</tr>
<tr>
<td>Xenon (Xe)</td>
<td>Propane (C₃H₈)</td>
<td>Pentafluoroethane (C₂HF₅)</td>
</tr>
<tr>
<td>Tetrachlorosilane (SiCl₄)</td>
<td>Butane (C₄H₁₀)</td>
<td>Perfluoroethane (C₂F₆)</td>
</tr>
<tr>
<td></td>
<td>Cyclopropane (c-C₃H₆)</td>
<td>Heptafluoropropane (C₃HF₇)</td>
</tr>
<tr>
<td></td>
<td>Dimethyl Ether (CH₃O)</td>
<td>Perfluoropropane (C₃F₈)</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide (CO)</td>
<td>Perfluorocyclobutane (C₄F₈)</td>
</tr>
<tr>
<td></td>
<td>Silane (SiH₄)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disilane (Si₂H₆)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylsilane (SiH₃CH₃)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trimethylsilane (SiH(CH₃)₃)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GEH₄P</th>
<th>SF₆P</th>
<th>NH₃P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germane (GeH₄)</td>
<td>Sulfur Hexafluoride (SF₆)</td>
<td>Ammonia (NH₃)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLXP</th>
<th>HCLP</th>
<th>OXP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron Trichloride (BCl₃)</td>
<td>Hydrogen Chloride (HCl)</td>
<td>Air (CDA)</td>
</tr>
<tr>
<td>Chlorine (Cl₂)</td>
<td>Chlorosilanes (SiH₃Cl, SiH₂Cl₂, SiHCl₃, and SiCl₄)</td>
<td>Oxygen (O₂)</td>
</tr>
<tr>
<td>Chlorosilane (SiH₃Cl)</td>
<td>All gases listed for use with</td>
<td>Carbon Dioxide (CO₂)</td>
</tr>
<tr>
<td>Dichlorosilane (SiH₂Cl₂)</td>
<td>OXP except Oxygen (O₂)</td>
<td>Nitrous Oxide (N₂O)</td>
</tr>
<tr>
<td>Trichlorosilane (SiHCl₃)</td>
<td></td>
<td>Inerts (see INP)</td>
</tr>
<tr>
<td>Tetrachlorosilane (SiCl₄)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Contact Pall Corporation Scientific & Laboratory Services (SLS) for technical assistance.

WARNINGS:
- Reaction of the purification material with large concentrations of air or water may evolve:
 - Heat and flammable gas for INP, SIP, and FCP purification materials.
 - Heat and corrosive gas for CLXP, HCLP, and HBRP purification materials.
 - Heat, flammable gas, and corrosive gas for SF6P and NH3P purification materials.
 - Heat, flammable gas, and toxic gas for GEH4P purification material.
 - Heat for OXP purification material.
NEVER PASS PURE OXYGEN OR AIR THROUGH A PALL GASKLEEN PURIFIER CONTAINING INP, SIP, FCP, GEH4P, SF6P, OR NH3P PURIFICATION MATERIALS.

Do not puncture the canister. Modification of the purifier assembly could result in contact with chemicals that may cause severe burns to the eyes and irritation of the skin (Reference Materials Safety Data Sheet, MSDS, supplied with assembly).

Hazardous gas should never be introduced into the purifier or associated piping until a field leak test demonstrates the system is ready for service (see step 12 of this installation procedure). Pall Corporation assumes no liability for damage or injury resulting from improper installation or operation of the Gaskleen purifier assembly. The user is ultimately responsible for equipment integrity and to comply with any applicable safety standards.

PALL POU GASKLEEN® PURIFIER ASSEMBLIES

1. Installation:

The schematic depicts a typical installation of a Pall POU Gaskleen Purifier for inert gas service. Additional gas lines and valves (to be supplied by end user) will be necessary for service with gases that require conditioning of the purification material before use. A pressure relief device and a temperature limiter are required in the pipeline to protect the assembly from over-pressurization and over-heating. Piping supports within 12 inches (305 mm) of the purifier connections are required (Note: the purifier nozzles are designed to support the purifier’s weight only). Traffic, wind, earthquake, and transport (other than standard shipping of the component) stability loadings have not been considered for this product.

Purifiers are supplied with an over-temperature indicator, which should be checked during installation. If the indicator turns black, contact Pall Corporation (SLS) for technical assistance.

SAFETY NOTES:

- Only trained personnel should install, operate, and maintain gas control equipment.
- All compressed gases are potentially hazardous and must be handled only by trained personnel. Incorrect execution of operations can cause fire, explosion, atmospheric release of hazardous gas, or costly contamination of process equipment.
- Material Safety Data Sheets (MSDS’s) for all gases and purification materials used in the facility should be available for consultation by all concerned personnel. These data sheets are obtainable from gas suppliers and Pall Corporation.
- An upstream process gas pressure regulator and pressure relief device must be installed when a potential exists for overpressurization (i.e. pressure surge beyond MAWP of assembly).
- For Gaskleen In-Line Purifiers the inlet fitting must be installed finger-tight with inert gas purge flow introduced within one minute after removal of the protective cap. Delay may result in degradation of the purification material.
- Before starting a job, all personnel responsible for equipment installation or operation must fully understand the specific procedures to be accomplished and all pertinent safety considerations.

TABLE 3: INSTALLATION

<table>
<thead>
<tr>
<th>Product:</th>
<th>Column A:</th>
<th>Column B:</th>
<th>Column C:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Installation Purge Gas Flow Rate:</td>
<td>Assembly Fittings:</td>
<td>Tools Required for Installation:</td>
</tr>
<tr>
<td>Mini Gaskleen Purifier</td>
<td>0.5 to 1.0 slpm (1.1 to 2.1 scfh)</td>
<td>¼” Non-Rotatable Male Gasket Seal (VCR® compatible)</td>
<td>11/16” and ¾” Open-end Wrenches</td>
</tr>
<tr>
<td>Gaskleen ST Purifier</td>
<td>0.5 to 1.0 slpm (1.1 to 2.1 scfh)</td>
<td>¼” Non-Rotatable Male Gasket Seal (VCR® compatible)</td>
<td>Two ¾” Open-end Wrenches</td>
</tr>
<tr>
<td>Gaskleen II Purifier</td>
<td>0.5 to 3.0 slpm (1.1 to 6.4 scfh)</td>
<td>¼” Non-Rotatable Male Gasket Seal (VCR® compatible)</td>
<td>Two ¾” Open-end Wrenches</td>
</tr>
<tr>
<td>Maxi Gaskleen Purifier</td>
<td>1.0 to 10 slpm (2.1 to 21.2 scfh)</td>
<td>¼” Rotatable Male Gasket Seal (VCR® compatible)</td>
<td>½” and ¾” Open-end Wrenches</td>
</tr>
</tbody>
</table>

VCR® is a Swagelok Company Trademark.

Site Preparation:
- When working with components that contact process or purge gases (for example, face-seal connection gaskets) always wear new, clean latex gloves to prevent contamination. For best results perform installation steps in an inert environment (glove bag).
- Inspect all face-seal connector-sealing surfaces for dirt, scratches, dents, pitting, or corrosion before assembly. Clean or replace affected connectors before assembly.
- Perform helium leak test on all affected process gas connections to ensure system is leak free prior to installing purifier. A spool piece with appropriate end connections can be used in place of the purifier for this test. If the leak test is failed, locate and repair the leak and repeat the test. Leak testing procedures are documented in SEMI F1, ASTM E 498, or ASTM E 499.
- Prior to installing purifier, purge all tubing, fittings, and components in the installation zone with inert gas (nitrogen or argon).

Process Gas Inlet and Outlet Connections:
- Do not remove purifier inlet and outlet face-seal connector terminators until immediately prior to equipment installation.
- When a purifier is used for hazardous gas purification, it must be installed within a suitable, exhausted enclosure. All connections external to the enclosure must be welded and
supported in accordance with pertinent safety ordinances and regulations. Dual containment lines may be mandated for certain hazardous gases.

- Retain the inlet and outlet face-seal connection terminators for future use when disconnecting the purifier.
- Damage to the sealing surface may result if the face seal connector is over-tightened or installed without a gasket. New gaskets must be installed for each connection made (supplied with the purifier).

Note: Wear clean room gloves to prevent contamination during installation. For best results perform installation steps in an inert environment (glove bag).

Installation Procedure:

1. Purge all tubing, fittings, and components in the installation zone with inert gas (nitrogen or argon).

2. Start purge flow (Ref. Table 3, column A) to the installation zone by opening an upstream valve. **MAINTAIN** purge gas flow until the installation and assembly are complete.

3. Remove and dispose of existing component by disconnecting fittings upstream and downstream of the component, removing the component and gaskets, and capping the component end connections. Use appropriate safety precautions for the type of process gas being purified.

4. Inspect the sealing surface(s) of the gas line fittings. If damage exists, replace the fittings.

5. Remove the purifier from its protective bags and attach the supplied gas specific sticker to the aluminized label on assembly (if applicable).

6. With purge gas flowing from the inlet line, remove the protective caps from the inlet end of the purifier and immediately install the unit on the inlet gas line using a new gasket. Tighten the nuts until finger tight. Both caps may need to be removed at this step if there is a space constraint that prevents making up the inlet connection with the outlet cap still on.

7. Gasket seating begins when there is sudden resistance to nut rotation. Using an appropriate open-end wrench on the purifier (Ref. Table 1, column C) and a ¾” open-end wrench on the connection nut, tighten as per connection make up instructions provided by the Gasket seal supplier.

Note: Gasket suppliers typically recommend that the connection nut be rotated an additional 45 degrees (⅛ turn) from the finger tight position for nickel, silver-plated nickel, or stainless steel gaskets.

8. Allow purifier to come to equilibrium with upstream gas supply pressure by introducing purge gas into the unit (Pall recommends setting the purge gas supply pressure between 30 – 60 psig, 0.21 – 0.41 MPa). Do not exceed pressure rating, MAWP, for purifier. Once
equilibrated (this may take up to a minute) remove the protective cap from the outlet end of
the purifier.

9. If purge gas flow is not detected from the outlet end of the unit, increase gas pressure or flow
rate until gas is detected.

10. Connect the outlet end of the purifier to the outlet gas line using a new gasket. Tighten the
nuts until finger tight and tighten the fitting as in Step 7.

11. Open the isolation valve downstream of installation zone. Ensure the gas flow path in the
outlet gas line is open to vent or scrubber.

12. Continue the flow of inert gas for 5 – 10 minutes.

13. Helium leak test the purifier as follows:
 a. Shut off isolation valves upstream and downstream of the purifier.
 b. Supply purified helium gas to the installation zone.
 c. Open upstream isolation valve.
 d. Pressurize purifier with helium up to maximum rated pressure (MAWP) of unit.
 e. Perform an outboard helium leak test on the purifier at the inlet and outlet face seal
 connections using a sniffer probe.
 f. Should leakage be detected, contact Pall Corporation (SLS) for technical assistance. Do
 not attempt to repair purifier.

 Caution: An inboard helium leak test of the purifier is not recommended because of the
 possibility of contaminating the AresKleen purification material by air infiltration
 when returning from vacuum. Also, as shipped, Pall Maxi Gaskleen Purifiers
 contain trace amounts of helium due to standard manufacturing processes. A
 spool-piece can be used to perform an inboard helium leak test on the process
 lines prior to installation of the purifier. If inboard helium leak testing of the
 purifier is required contact Pall Corporation (SLS) for technical assistance.

14. Following helium leak test, post-purge the purifier assembly and gas line by shutting off the
purified helium supply, depressurizing the purifier, and then resuming flow of inert gas at the
installation purge flow rate (ref. Table 1, column A) for 5 – 10 minutes to displace remaining
helium.

15. After completion of the above procedure, the purifier is ready for conditioning.

2. Conditioning:

The purpose of the conditioning procedures is to displace inert gas used during installation of the
purifier and either to generate or to activate certain functional groups that are chemically bonded
to the AresKleen purification material. Any stray contaminants introduced during the installation
procedure are also removed during the conditioning process.
Warning: Conditioning of purification material with reactive or corrosive gases is usually an exothermic (heat-producing) reaction. When conditioning is improperly executed, personal injury from hazardous gas emissions can result. To preclude atmospheric pollution and to avoid contamination of process lines and process tool, effluent gases exiting the purifier during conditioning should be directed to a suitable scrubber. Should questions arise during conditioning of the material, immediately interrupt process gas flow by closing the inlet and outlet valves on the purifier, then contact Pall Corporation (SLS) for technical assistance.

- When the purification material is initially exposed to some process gases, substantial amount of process gas may react or be adsorbed on the purification material, resulting in initially unstable purifier performance. For best results, the purification material must be conditioned with intended process gas before start up.
- The specific conditioning procedure required depends upon the nature of the process gas and type of purification material used. Carefully follow the procedure that is provided. In particular, do not exceed the recommended process gas flow rate as overheating and damage to the purification material could result.
- Conditioning should be done after purifier installation. Conditioning is also recommended if a purifier has been out of service for two weeks or longer (especially for Intended Process Gases within Group IV). When the process gas consists of a blend of two or more gases, conditioning is recommended if the purifier has been out of service for three days or longer. Conditioning ensures that the relative percentage of the constituents remains unchanged upon passage through the purifier.
- Once the purification material is conditioned with the process gas, it should be kept under positive pressure of that process gas at all times. Should purging with an inert gas ever be required, the purification material will require conditioning again before returning to service. Consult with Pall Corporation (SLS) for technical assistance and recommendations.
- DO NOT subject previously conditioned purification material to a vacuum. Any hazardous gas physically adsorbed on the purification material surface may be released when the material is subjected to a vacuum. Contact Pall Corporation (SLS) for technical assistance with sub-atmospheric operation of purifier.
- Purification material on-site conditioning typically requires a process gas flow control and monitoring device, such as a delivery line throttling valve and a flow meter. Such components are not provided as standard equipment. The purchaser is solely responsible for obtaining and installing these components.

For conditioning, a minimum volume, V (liters), of the process gas is required. If a pure process gas (100% concentration) is used at a flow rate of F (slpm), the minimum time for gas flow, T minutes, during conditioning is given by:

$$T \text{ minutes} = \frac{V}{F}$$

If a carrier gas is being used to dilute the process gas, then a longer conditioning time is required; the time increases proportional to the inverse of the dilution percentage (A% – percentage of...
active ingredient). For example, if the gas is actually a blend containing A% of the process gas, then the minimum time, T minutes, is given by:

\[T \text{ minutes} = \frac{V}{(A%/100) F} \]

Select the appropriate gas group by active ingredient (see following pages). Generally, the active ingredient is the Intended Process Gas as specified in the part number of the purifier. If necessary, contact Pall Corporation (SLS) for technical assistance.

TABLE 4: CONDITIONING

<table>
<thead>
<tr>
<th>Product</th>
<th>Column A:</th>
<th>Column B:</th>
<th>Column C:</th>
<th>Column D:</th>
<th>Column E:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. Volume 100% Process Gas for Groups I and II</td>
<td>Min. Volume 100% Process Gas for Group III</td>
<td>Min. Volume 100% Process Gas for Group IV</td>
<td>Maximum Flow Rate for Groups I, II, and III</td>
<td>Maximum Flow Rate for Group IV</td>
</tr>
<tr>
<td>Mini Gaskleen Purifier</td>
<td>5 liters (0.18 ft³)</td>
<td>24 liters (0.85 ft³)</td>
<td>0.72 liters (0.03 ft³)</td>
<td>1.0 slpm (2.12 scfh)</td>
<td>0.4 slpm (0.85 scfh)</td>
</tr>
<tr>
<td>Gaskleen ST Purifier</td>
<td>9 liters (0.32 ft³)</td>
<td>90 liters (3.18 ft³)</td>
<td>2.70 liters (0.10 ft³)</td>
<td>5.0 slpm (10.6 scfh)</td>
<td>1.0 slpm (2.12 scfh)</td>
</tr>
<tr>
<td>Gaskleen II Purifier</td>
<td>5 liters (0.18 ft³)</td>
<td>50 liters (1.76 ft³)</td>
<td>1.50 liters (0.05 ft³)</td>
<td>3.0 slpm (6.36 scfh)</td>
<td>1.0 slpm (2.12 scfh)</td>
</tr>
<tr>
<td>Maxi Gaskleen Purifier</td>
<td>64 liters (2.26 ft³)</td>
<td>640 liters (22.6 ft³)</td>
<td>19.2 liters (0.11 ft³)</td>
<td>10 slpm (21.2 scfh)</td>
<td>1.0 slpm (2.12 scfh)</td>
</tr>
</tbody>
</table>

Note: Contact Pall Corporation (SLS) for technical assistance with conditioning of any Gaskleen POU Purifier for service in gases not listed below.

Warning: A purifier that has been conditioned for a particular process gas must be used for that process gas only. The AresKleen purification material is gas specific. Without prior authorization from Pall Corporation, Gaskleen Purifier assemblies purchased for one gas must not be used for any other gas.

With the exception of purifiers containing AresKleen HCLP or HBRP material all purifiers are supplied with an over-temperature indicator affixed to the label on the housing. This indicator should be monitored during conditioning. If the indicator turns black discontinue conditioning by stopping flow of conditioning gas and initiating flow of inert gas, then contact Pall Corporation (SLS) for technical assistance. For purifiers containing HCLP or HBRP material the indicator is shipped in the purifier’s original packaging but it is not affixed to the housing. During normal conditioning for service in HCl or HBr, the temperature of the purifier may increase enough to cause the indicator to turn black; therefore, Pall recommends that the indicator be affixed to the purifier after completion of the conditioning process.
Note: Before conditioning, verify that system is leak free and check that the contents of the gas cylinder / gas source match the intended process gas for use in the purifier (as per the product part #). If the no leaks are found and the cylinder contents are correct, then proceed with conditioning process.

Group I: For He, N₂, Ne, Ar, Kr, Xe, H₂, CH₄, C₂H₄, C₂H₆, C₃H₆, c-C₃H₆, C₃H₈, C₄H₁₀, (CH₃)₂O, CO, CH₃F, CH₂F₂, CHF₃, CF₄, C₂H₂F₄, C₂HF₅, C₂F₆, C₃HF₇, C₃F₈, and C₄F₈ or blends of these constituent gases.

Refer to Table 4, columns A and D, for the minimum volume of process gas to flow through purifier and the maximum flow rate not to be exceeded during conditioning. As an example, condition a Gaskleen II Purifier for H₂ service by flowing 0.5 slpm (1.06 scfh) of 100% process gas through the unit for 10 minutes.

Note: If the surface temperature of the purifier feels warm to the touch at any time during the installation or conditioning procedure, immediately stop gas flow, check for leaks and recheck that the contents of the gas cylinder / gas source match the intended process gas for use in the purifier (as per the product part number). If no leaks are found and the cylinder contents are correct, then resume gas flow.

Group II: For Air, O₂, N₂O, and CO₂.

Refer to Table 4, columns A and D, for the minimum volume of process gas to flow through purifier and the maximum flow rate not to be exceeded during conditioning. As an example, condition a Gaskleen II Purifier for O₂ service by flowing 0.5 slpm (1.06 scfh) of 100% process gas through the unit for 10 minutes.

Note: During the conditioning, the surface temperature of the purifier may feel warm to the touch. If the purifier feels hot, continue conditioning by reducing the gas flow rate or introducing an inert gas to create a dilute blend until the elevated temperature subsides then return to previous conditioning parameters. No damage to the purification material or purifier is expected. Once the unit has completely cooled, the purifier is ready for service.

Group III: For HCl, HBr, CCl₄, BCl₃, Cl₂, SiH₃Cl, SiH₂Cl₂, SiHCl₃ and SiCl₄.

Slowly pressurize the purifier with 100% process gas and hold at a line pressure ≥15 psig (0.10 MPa) for two (2) hours. Refer to Table 4, columns B and D, for the minimum volume of process gas to flow through purifier and the maximum flow rate not to be exceeded during conditioning. As an example, condition a Gaskleen II Purifier for HCl service by pressurizing unit with 30 psig (0.21 MPa) of HCl for 2 hours and then flowing 1.0 slpm (2.12 scfh) of 100% process gas through the unit for 50 minutes. Ensure that effluent gas used during conditioning is directed to a scrubber or vent and NOT the process tool.
Note: During the conditioning, the surface temperature of the purifier may feel warm to the touch. If the purifier feels hot, continue conditioning by reducing the gas flow rate or introducing an inert gas to create a dilute blend until the elevated temperature subsides then return to previous conditioning parameters. No damage to the purification material or purifier is expected. Once the unit has completely cooled, the purifier is ready for service.

For purifiers containing HCLP or HBRP material the indicator is shipped with the assembly but is not affixed to the housing. After conditioning (i.e. when the housing has returned to room temperature) attach the supplied over-temperature indicator sticker to the aluminized label on assembly covering the circle near the text that states “overheated when black.”

Alternate Group III: For SiH₂Cl, SiH₂Cl₂, SiHCl₃ and SiCl₄.

For Group III gases, conditioning can alternately be done first with a dilute blend containing less than 20% process gas at a low flow rate. After using a dilute blend, the conditioning should be repeated using the actual (operating) blend of process gas. This two-step conditioning procedure will help prevent the generation of excess temperatures within the purifier. High temperature will not damage the AresKleen purification material but may lead to decomposition of the process gas and may cause a personnel hazard because of a hot surface.

Refer to Table 4, columns B and D. Slowly, pressurize purifier with dilute blend at ≥ 15 psig (0.10 MPa) for 2 hours (do not exceed maximum flow rate for conditioning – column D). Then flow dilute blend gas for the minimum volume (column B) of process gas to flow through purifier and a flow rate that is ≤ the maximum flow rate not to be exceeded during conditioning. After completing the dilute blend conditioning, repeat with actual process gas concentration for an additional volume of gas equal to the minimum volume (column B). If use of a dilute blend is not possible, use actual process gas concentration at a reduced flow rate (10% of value in column D). As an example, condition a Gaskleen II Purifier for SiH₂Cl₂ service by first pressurizing unit with 10% SiH₂Cl₂ blend for 2 hours. Follow this by flowing 0.5 slpm (1.06 scfh) of 10% SiH₂Cl₂ blend through the unit for 100 minutes. Then switch flow to 1.0 slpm (2.12 scfh) of 100% SiH₂Cl₂ process gas through the unit for an additional 50 minutes.

Ensure that effluent gas during conditioning is directed to a suitable scrubber or vent and NOT to the process tool.

Note: During conditioning of these Group III gases, the purifier may feel warm to the touch. If the purifier feels hot, reduce the gas flow rate or use a more dilute blend for conditioning.

Group IV: For SiH₄, Si₂H₆, SiH₃CH₃, SiH(CH₃)₃, GeH₄, NH₃, and SF₆.

For Group IV gases, it is strongly recommended that conditioning be done first with a dilute blend containing less than 20% process gas at a low flow rate. After using a dilute blend, the conditioning should be repeated using the actual (operating) blend of process gas. This two-step conditioning procedure will help prevent the generation of excess temperatures within the
purifier. Moderate temperature will not damage the AresKleen purification material but may lead to decomposition of the process gas and may cause a personnel hazard because of a hot surface.

Refer to Table 4, columns C and E, for the minimum volume of process gas to flow through purifier and the maximum flow rate not to be exceeded during conditioning. As an example, condition a Gaskleen II Purifier for SiH₄ service by first flowing 0.25 slpm (0.53 scfh) of 10% process gas through the unit for 60 minutes. Then switch flow to 0.5 slpm (1.06 scfh) of 100% process gas through the unit for an additional 3 minutes.

Ensure that effluent gas during conditioning is directed to a suitable scrubber or vent and NOT to the process tool.

Note: During conditioning of Group IV gases, the purifier may feel warm to the touch. If the purifier feels hot, reduce the gas flow rate or use a more dilute blend for conditioning.

Traces of argon may be present in effluent gas stream for some time after conditioning.

Upon completion of the above Conditioning Procedures, ensure that the product label on the purifier corresponds to the process gas being used and purge all connecting lines and equipment. The Pall POU Gaskleen Purifier is now ready for service.

3. Post-Conditioning:

1. Once the purifier is conditioned with a process gas, it must be left under pressure of that gas. If the process gas is subsequently purged with an inert gas, a second conditioning with the process gas may be required prior to re-use with the same process gas.
2. Conditioning may be required also if the process gas blend is replaced with a gas blend of different concentration. If a purifier in use with hydrides or gas blends has been out of service for an extended time, a purge of the purifier with a minimum of 10% of the gas volume shown in column B of table 4 is recommended.
3. **DO NOT** subject the purifier to a vacuum if material is conditioned with a toxic or corrosive gas. Release of toxic or corrosive gases may result under vacuum.
4. A purifier conditioned for a particular process gas must be used for that process gas only. The purification material is gas specific.

Warnings:

1. If a purifier has been conditioned with any gas other than an inert gas, then it must be assumed that the effluent will always contain some level of the conditioning gas (e.g. when a purifier is purged with inert gas prior to its removal from service).
2. Release of toxic or corrosive gases may result if care is not taken to contain or dispose of these gases properly.
4. Operation:

In Case of Emergency

Immediate action. Should a potentially dangerous situation arise in the vicinity of the equipment, follow facility policy for shutting down equipment and evacuating personnel. If a facility policy does not exist:
1. Close the process gas cylinder or process gas source valve.
2. Evacuate all personnel from the region.

Malfunction. Should malfunction be suspected, immediately interrupt equipment operation, and then notify Pall Corporation (SLS). Do not attempt to operate the equipment until it has been competently repaired and tested.

Purification material spills. Purification material spills and personnel exposure to purification material or evolved gases should be managed as recommended in pertinent Material Safety Data Sheets (MSDS). Requisite MSDS documents should be available for use at all times. If specific purification material MSDS is required, contact Pall Microelectronics for a duplicate copy. MSDS for process gases are obtainable from gas suppliers.

The purifier assembly is sufficiently durable to make purification material spillage most unlikely. Purification material spillage can occur only when the equipment is substantially abused or damaged.

In general, avoid breathing, ingestion, and all other bodily contact with purification material or gases. Should bodily contact with a purification material occur, immediately brush off the purification material, and then flush the affected tissues with tap water for 20 minutes. Consult a physician immediately.

5. Maintenance:

Depletion of Purifier

Depletion of the purification material typically is indicated when the purification material renders unacceptable impurity concentrations in the process gas delivery stream.

Depleted and partially depleted purification materials alike are classified as hazardous production materials. Accordingly, disposal of depleted or partially depleted purification material must be accomplished at an appropriate hazardous production material disposal facility only (ref. Disposal section below).

6. Purging Prior to Disconnecting and Removing Purifier (Typical):

Neither purging equipment nor purging protocol is provided. Both remain the sole responsibility of the user. The typical protocol offered here is for “guideline” purposes only. It may need to be suitably adapted to specific applications. Should doubt exist as to whether
If a hazardous gas has been purified, its concentration within the purifier and associated piping must be reduced to less than the gas specific TLV prior to purifier disconnection. To accomplish this goal, purge purifier with at least the minimum amount of inert gas shown below for each purifier assembly. Monitor the effluent gas to determine when conditions are safe to remove the purifier.

Mini Gaskleen Purifier: Minimum of 24 liters (0.85 ft³) of inert purge gas

Gaskleen ST Purifier: Minimum of 100 liters (3.53 ft³) of inert purge gas

Gaskleen II Purifier: Minimum of 50 liters (1.76 ft³) of inert purge gas

Maxi Gaskleen Purifier: Minimum of 310 liters (10.9 ft³) of inert purge gas

Caution: Maintenance personnel must be provided with suitable protective equipment.

Even though a purifier that has served for hazardous gas purification may have been properly purged, small but dangerous amounts of process gas may nevertheless remain adsorbed to the purification material or equipment surfaces. For this reason, and to preclude potential personal injury when replacing a purifier that has served for purification of hazardous gases, personnel must be provided with suitable protective equipment.

Typical Procedure:
1. Open inlet and outlet valves on purifier.
2. For all process gases, purge the purifier with at least the minimum volume of purge gas as stated below. Ensure that effluent gas is directed to a suitable vent or scrubber and NOT to the process tool.
 - Purifiers exposed to “Intended Process Gases” listed for INP and OXP purification materials do not require purging (exceptions for SiCl₄, O₂, CO₂, and N₂O which should be purged with at least the minimum volume of inert gas listed above for the specific assembly being purged).
 - Purifiers exposed to “Intended Process Gases” listed for SIP, FCP, and SF₆P purification materials should be purged with at least the minimum volume of inert gas listed above for the specific assembly being purged (exceptions for SiH₄, Si₂H₆, SiH₃CH₃, and SiH(CH₃)₃ which should be purged with at least 10 times the volume of inert gas listed).
 - Purifiers exposed to “Intended Process Gases” listed for CLXP, HCLP, HBRP, and SF₆P purification materials should be purged with at least 5 times the volume of inert gas listed above for the specific assembly being purged.
3. Reduce the pressure in the purifier by closing the inlet valve(s) on the purifier allowing the gas to vent to < 5 psig (0.03 MPa) – venting to just above atmospheric pressure is best.
4. Pressurize the purifier by closing outlet valve(s) and opening inlet valve(s) on the purifier allowing purge gas to enter the unit until the pressure is > 60 psig (0.41 MPa) – do not exceed pressure rating, MAWP, for purifier.

5. Measure the concentration of the toxic/hazardous gas in the effluent gas by suitable means, such as a toxic gas monitor.

6. Continue to vent-purge cycling the purifier by alternately performing steps 3 and 4 until the effluent no longer is hazardous.

7. Alternately, the process can be accelerated if venting (step 3) is enhanced by evacuating the purifier to a pressure of –12 psig (~0.83 MPa) or less; i.e. < 2.7 psia (< 186 millibar).

After purging, trace levels of hazardous gas in the purifier should be reduced to a level below the OSHA TWA. If the concentrations cannot be purged to the OSHA TWA, the purifier must be purged until the concentration of the hazardous/toxic gas is below the permissible OSHA Ceiling or Peak Concentration (TLV). Ensure that the hazardous/toxic gas concentration is less than the NIOSH IDLH of the gas. Specific values for each of these levels are contained within the MSDS for each service gas.

TWA – Time Weighted Average
TLV – Threshold Limit Value
NIOSH – National Institute for Occupational Safety & Health
IDLH – Immediately Dangerous to Life and Health concentration

After removing purifier from service install caps on end connections using new VCR gaskets to prevent any potential release of hazardous gases.

7. Troubleshooting:

High Impurity Concentrations in Delivered Process Gas
Observation: Concentrations of impurities in purified process gas are greater than specified.
Possible Causes:
- Leak or equipment contamination downstream of purifier.
- Depleted purification material bed.
- Purification material bed inadequately conditioned for intended process gas.
- Purification material not suitable for removal of encountered impurities.

Excessive Heat Generated During Purification
Interpretation: The purifier assembly is uncomfortably warm to the touch while process gas is flowing through purification material bed.
Possible Causes:
- Major leak or equipment contamination upstream of purifier.
- Excessive impurity (perhaps water vapor) concentration in process gas supply.
- Purification material unsuitable for purification of supplied process gas. Purification material was not adequately conditioned against intended process gas.
- Wrong gas supplied to purifier.
Low Delivery Flow Rate or Pressure
Interpretation: Unable to achieve requisite process gas delivery flow or pressure.
Possible Causes:
- Clogged purifier filter, valve, purification material bed, or gas line.
- Inadequate process gas supply pressure.
- Defective valve.
- Valve operators improperly positioned
- Purifier assembly too small for application.

8. Disposal Procedure:

It is the customer’s responsibility to dispose of the purifier in accordance with all Federal, State, and local regulations.

If the purifier is exposed to toxic gases or gases containing toxic elements, the purification material may contain these toxic materials or reaction products thereof. It may exhibit the characteristic of toxicity as defined in the hazardous waste regulations 40 CFR 261 Subpart C or D. Refer to applicable MSDS for the specific toxic gas in use to determine appropriate containment and disposal requirements.

As a service to domestic customers, Pall Corporation has established a source for disposal information and handling of Gaskleen Purifiers. Contact Waste Technology Service, Inc. (attn: James J. Weber) at 716-282-4100 or 716-692-2111 for assistance.

Pall Microelectronics Group
2200 Northern Boulevard
East Hills, New York 11548-1289
516-484-5400 • 1-800-360-7255
Fax: 516-625-3610
http://www.pall.com

Pall Gaskleen purifiers comply with the applicable portions of the Pressure Equipment Directive (PED) 97/23/EC. Purifiers not carrying the CE mark comply with the directive, but do not require marking.

© Copyright 1993, 1998, Pall Corporation. All rights reserved.